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4 The spaces Lp and Lp

4.1 Elementary inequalities and seminorms

Lemma 4.1. Let a, b ≥ 0 and p ≥ 1. Then,(
a+ b

2

)p

≤ ap + bp

2
.

Let a, b ≥ 0 and p > 1. Set q such that 1/p+ 1/q = 1. Then,

a1/pb1/q ≤ a

p
+

b

q
.

Proof. Exercise.

De�nition 4.2. Let X be a measure space with measure µ and p > 0.

Lp(X,µ,K) := {f : X → Kmeasurable : |f |p integrable} .

De�ne also the function ‖ · ‖p : Lp(X,µ,K) → R+
0 given by

‖f‖p :=
(∫

X
|f |p

)1/p

.

Proposition 4.3. The set Lp(X,µ,K) for p ∈ (0,∞) is a vector space.

Also, ‖ · ‖p is multiplicative, i.e., ‖λf‖p = |λ|‖f‖p for all λ ∈ K and f ∈ Lp.

Furthermore, if p ≤ 1 the function dp : Lp(X,µ,K) × Lp(X,µ,K) → [0,∞)
given by dp(f, g) := ‖f − g‖pp is a pseudometric.

Proof. Exercise.

De�nition 4.4. Let X be a measure space with measure µ. We call a
measurable function f : X → K essentially bounded i� there exists a bounded
measurable function g : X → K such that g = f almost everywhere. We
denote the set of essentially bounded functions by L∞(X,µ,K). De�ne also
the function ‖ · ‖∞ : L∞(X,µ,K) → R+

0 given by

‖f‖∞ := inf {‖g‖sup : g = f a.e. and g bounded measurable} .

Proposition 4.5. The set L∞(X,µ,K) is a vector space and ‖ · ‖∞ is a

seminorm.

Proof. Exercise.

Proposition 4.6. Let f, g be measurable maps such that f = g almost ev-

erywhere. Let p ∈ (0,∞]. Then, f ∈ Lp i� g ∈ Lp.

Proof. Apply Proposition 3.12 to |f |p and |g|p.
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Proposition 4.7. Let f ∈ Lp for p ∈ (0,∞). Then, f vanishes outside of a

σ-�nite set.

Proof. By Proposition 3.13, |f |p vanishes outside a σ-�nite set and hence so
does f .

Proposition 4.8. Let f ∈ L∞. Then, the set {x : |f(x)| > ‖f‖∞} has

measure zero. Moreover, there exists g ∈ L∞ bounded such that g = f
almost everywhere and ‖g‖sup = ‖g‖∞ = ‖f‖∞.

Proof. Fix c > 0 and consider the set Ac := {x : |f(x)| ≥ ‖f‖∞ + c}.
Since there exists a bounded measurable function g such that g = f almost
everywhere and ‖g‖sup < ‖f‖∞+c we must have µ(Ac) = 0. Thus {A1/n}n∈N
is an increasing sequence of sets of measure zero. So, their union A :=⋃

n∈NAn = {x : |f(x)| > ‖f‖∞} must have measure zero. De�ne now

g(x) :=

{
f(x) ifx ∈ X \A
0 ifx ∈ A

.

Then, g is measurable, bounded, and g = f almost everywhere. Moreover,
‖g‖sup ≤ ‖f‖∞. On, the other hand, since g = f almost everywhere we
must have ‖g‖sup ≥ ‖f‖∞ by the de�nition of ‖ · ‖∞. Also, f − g = 0 almost
everywhere and hence ‖f − g‖∞ ≤ ‖0‖sup, i.e., ‖f − g‖∞ = 0 and thus
‖f‖∞ = ‖g‖∞.

Proposition 4.9. Let f ∈ Lp for p ∈ (0,∞]. Then ‖f‖p = 0 i� f = 0
almost everywhere.

Proof. If p < ∞ apply Proposition 3.22 to |f |p. Exercise.Complete the
proof for p = ∞.

Theorem 4.10 (Hölder's inequality). Let p ∈ [1,∞] and q such that 1/p+
1/q = 1. Given f ∈ Lp and g ∈ Lq we have fg ∈ L1 and,

‖fg‖1 ≤ ‖f‖p‖g‖q.

Proof. First observe that fg is measurable by Proposition 2.18 since f and
g are measurable.

We start with the case p = 1 and q = ∞. (The case q = 1 and p = ∞
is analogous.) By Proposition 4.8 there is a bounded function h ∈ L∞ such
that h = g almost everywhere and ‖h‖sup = ‖g‖∞. We have

|fh| ≤ |f |‖h‖sup.

Thus, |fh| is bounded from above by an integrable function and hence fh is
integrable by Proposition 3.30. But fh = fg almost everywhere and so fg is
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integrable by Proposition 3.12. Moreover, integrating the above inequality
over X we obtain,

‖fg‖1 =
∫
X
|fg| =

∫
X
|fh| ≤ ‖h‖sup

∫
X
|f | = ‖f‖1‖g‖∞.

It remains to consider the case p ∈ (1,∞). If ‖f‖p = 0 or ‖g‖q = 0 then
f or g vanishes almost everywhere by Proposition 4.9. Thus, fg vanishes
almost everywhere and ‖fg‖1 = 0 by the same Proposition (and in particular
fg ∈ L1). We thus assume now ‖f‖p 6= 0 and ‖g‖q 6= 0. Set

a :=
|f |p

‖f‖pp
, and b :=

|g|q

‖g‖qq
.

Using the second inequality of Lemma 4.1 we �nd,

|fg|
‖f‖p‖g‖q

≤ 1

p

|f |p

‖f‖pp
+

1

q

|g|q

‖g‖qq
.

This implies that |fg| is bounded from above by an integrable function and
is hence integrable by Proposition 3.30. Moreover, integrating both sides of
the inequality over X yields the inequality that is to be demonstrated.

Proposition 4.11 (Minkowski's inequality). Let p ∈ [1,∞] and f, g ∈ Lp.

Then,

‖f + g‖p ≤ ‖f‖p + ‖g‖p.

In particular, ‖ · ‖p is a seminorm.

Proof. The case p = 1 is already implied by Proposition 3.15 while the case
p = ∞ is implied by Proposition 4.5. We may thus assume p ∈ (1,∞). Set
q such that 1/p+ 1/q = 1. We have,

|f + g|p ≤ |f ||f + g|p−1 + |g||f + g|p−1.

Notice that |f + g|p−1 ∈ Lq so that the two summands on the right hand
side are integrable by Theorem 4.10. Integrating on both sides and applying
Hölder's inequality to both summands on the right hand side yields,

‖f + g‖pp ≤ ‖f‖p‖|f + g|p−1‖q + ‖g‖p‖|f + g|p−1‖q

Noticing that ‖|f + g|p−1‖q = ‖f + g‖p−1
p we �nd,

‖f + g‖pp ≤ (‖f‖p + ‖g‖p)‖f + g‖p−1
p .

Dividing by ‖f + g‖p−1
p yields the desired inequality. This is nothing but

the triangle inequality for ‖ · ‖p. The other properties making this into a
seminorm are immediately veri�ed.
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4.2 Properties of Lp spaces

Theorem 4.12. Let p ∈ [1,∞) and {fn}n∈N be a Cauchy sequence in Lp.

Then, the sequence converges to some f ∈ Lp in the ‖ · ‖p-seminorm. That

is, Lp is complete. Furthermore, there exists a subsequence which converges

pointwise almost everywhere to f and for any ε > 0 converges uniformly to

f outside of a set of measure less than ε.

Proof. Since {fn}n∈N is Cauchy, there exists a subsequence {fnk
}k∈N such

that

‖fnl
− fnk

‖p < 2−2k ∀k ∈ N and ∀l ≥ k.

De�ne

Yk := {x ∈ X : |fnk+1
(x)− fnk

(x)| ≥ 2−k} ∀k ∈ N.

Then,

2−kpµ(Yk) ≤
∫
Yk

|fnk+1
− fnk

|p ≤
∫
X
|fnk+1

− fnk
|p < 2−2kp ∀k ∈ N.

This implies, µ(Yk) < 2−kp ≤ 2−k for all k ∈ N. De�ne now Zj :=
⋃∞

k=j Yk
for all j ∈ N. Then, µ(Zj) ≤ 21−j for all j ∈ N.

Fix ε > 0 and choose j ∈ N such that 21−j < ε. Let x ∈ X \ Zj . Then,
for k ≥ j we have

|fnk+1
(x)− fnk

(x)| < 2−k.

Thus, the sum
∑∞

k=1 fnk+1
(x) − fnk

(x) converges absolutely. In particular,
the limit

f(x) := lim
l→∞

fnl
(x) = fn1(x) +

∞∑
l=1

fnl+1
(x)− fnl

(x)

exists. For all k ≥ j we have the estimate,

|f(x)− fnk
(x)| =

∣∣∣∣∣
∞∑
l=k

fnl+1
(x)− fnl

(x)

∣∣∣∣∣ ≤
∞∑
l=k

∣∣fnl+1
(x)− fnl

(x)
∣∣ ≤ 21−k

Thus, {fnk
}k∈N converges to f uniformly outside of Zj , where µ(Zj) < ε.

Repeating the argument for arbitrarily small ε we �nd that f is de�ned on
X \Z, where Z :=

⋂∞
j=1 Zj . Furthermore, {fnk

}k∈N converges to f pointwise
on X \Z. Note that µ(Z) = 0. By Theorem 2.19, f is measurable on X \Z.
We extend f to a measurable function on all of X by declaring f(x) = 0 if
x ∈ Z.

For �xed k ∈ N consider the sequence {gl}l∈N of integrable functions
given by

gl := |fnl
− fnk

|p.
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Since the sequence {
∫
X gl}l∈N is bounded, lim inf l→∞

∫
X gl exists and we

can apply Proposition 3.28. Thus, there exists an integrable function g and
g(x) = lim inf l→∞ gl(x) almost everywhere. We conclude that g = |f − fnk

|p
almost everywhere. In particular, since g is integrable, f − fnk

∈ Lp and so
also f ∈ Lp. Moreover,∫

X
|f − fnk

|p ≤ lim inf
l→∞

∫
X
|fnl

− fnk
|p < 2−2kp.

In particular,
‖f − fnk

‖p < 2−2k.

So {fnk
}k∈N and therefore also {fn}n∈N converges to f in the ‖·‖p-seminorm.

Theorem 4.13. Let {fn}n∈N be a Cauchy sequence in L∞. Then, the se-

quence converges uniformly almost everywhere to a function f ∈ L∞. Fur-

thermore, the sequence converges to f in the L∞-seminorm. In particular,

L∞ is complete.

Proof. De�ne Zn := {x ∈ X : |fn(x)| > ‖fn‖∞} for all n ∈ N and Yn,m :=
{x ∈ X : |fn(x)− fm(x)| > ‖fn − fm‖∞}. By Proposition 4.8 µ(Zn) = 0 for
all n ∈ N and µ(Yn,m) = 0 for all n,m ∈ N. De�ne

Z :=

(⋃
n∈N

Zn

)
∪

 ⋃
n,m∈N

Yn,m

 .

Then, µ(Z) = 0. So, {fn(x)}n∈N converges uniformly on X \ Z to some
measurable function f . We extend f to a measurable function on all of X
by de�ning f(x) = 0 if x ∈ Z. Exercise.Complete the proof.

Theorem 4.14 (Dominated Convergence Theorem in Lp). Let p ∈ [1,∞).
Let {fn}n∈N be a sequence of functions in Lp such that there exists a real

valued function g ∈ Lp with |fn| ≤ g for all n ∈ N. Assume also that

{fn}n∈N converges pointwise almost everywhere to a measurable function f .
Then, f ∈ Lp and {fn}n∈N converges to f in the ‖ · ‖p-seminorm.

Proof. Exercise.Prove this by suitably adapting the proof of Theorem 3.29.
Hint: Replace |fn − fm| by |fn − fm|p, and apply Theorem 4.12 instead of
Proposition 3.25.

Proposition 4.15. Let p ∈ [1,∞). Then, S ⊆ Lp is a dense subset.

Proof. If f is an integrable simple function f , then |f |p is also integrable
simple. So, S is a subset of Lp. Now consider f ∈ Lp. We need to con-
struct a sequence of integrable simple functions that converges to f in the
‖ · ‖p-seminorm. Exercise.Do this by appropriately modifying the proof of
Proposition 3.30.
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Proposition 4.16. The simple maps form a dense subset of L∞.

Proof. Let f ∈ L∞ and �x ε > 0. The statement follows if we can show that
there exists a simple map h such that ‖f−h‖∞ < ε. By Proposition 4.8 there
is a bounded map g ∈ L∞ such that g = f almost everywhere and ‖g‖sup =
‖f‖∞. Since g is bounded, its image A ⊂ K is bounded and thus contained
in a compact set. This means that we can cover A by a �nite number
of open balls {Bk}k∈{1,...,n} of radius ε. Denote the centers of the balls by
{xk}k∈{1,...,n}. Now take measurable subsets Ck ⊆ Bk such that Ci∩Cj = ∅ if
i 6= j while still covering A, i.e., A ⊆

⋃
k∈{1,...,n}Ck. (Exercise.Explain how

this can be done.) De�ne Dk := g−1(CK). {Dk}k∈{1,...,k} form a measurable
partition of X. Now set h(x) := xk if x ∈ Dk. Then, h is simple and
‖f − h‖∞ = ‖g − h‖∞ ≤ ‖g − h‖sup < ε.

Exercise 29. The Monotone Convergence Theorem (Theorem 3.26) and the
Dominated Convergence Theorem (Theorem 3.29 or 4.14) are not true in L∞.
Give a counterexample to both. More precisely, give a pointwise increasing
sequence {fn}n∈N of real non-negative valued functions fn ∈ L∞ on some
measure space X such that {fn}n∈N converges pointwise to some f ∈ L∞,
but {fn}n∈N does not converge to any function in the ‖ · ‖∞-seminorm.

We have seen already that the spaces Lp with p ∈ [1,∞] are vector spaces
with a seminorm ‖ · ‖p and are complete with respect to this seminorm. In
order to convert a vector space with a seminorm into a vector space with a
norm, we may quotient by those elements whose seminorm is zero.

De�nition 4.17. Let p ∈ [1,∞]. Then the quotient space Lp/ ∼ in the
sense of Proposition 1.56 is denoted by Lp. It is a Banach space.

Banach spaces have many useful properties that make it easy to work
with them. So usually, one works with the spaces Lp instead of the spaces
Lp. Nevertheless one can still think of the these as "spaces of functions"
even though they are spaces of equivalence classes. But (because of Propo-
sition 4.9) two functions are in one equivalence class only if they are "essen-
tially the same", i.e., equal almost everywhere.

Proposition 4.18. Let p, q ∈ (0,∞] and set r ∈ (0,∞] such that 1/r =
1/p+ 1/q. Then, given f ∈ Lp and g ∈ Lq we have fg ∈ Lr. Moreover, the

following inequality holds,

‖fg‖r ≤ ‖f‖p‖g‖q.

Proof. Exercise.[Hint: For f ∈ Lp and g ∈ Lq apply Hölder's Theorem
(Theorem 4.10) to |f |r and |g|r, in the case r < ∞. Treat the case r = ∞
separately.]
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Proposition 4.19. Let 0 < p ≤ q < r ≤ ∞. Then, Lp∩Lr ⊆ Lq. Moreover,

if r < ∞,

‖f‖q(r−p)
q ≤ ‖f‖p(r−q)

p ‖f‖r(q−p)
r ∀f ∈ Lp ∩ Lr.

If r = ∞ we have,

‖f‖qq ≤ ‖f‖pp ‖f‖q−p
∞ ∀f ∈ Lp ∩ L∞.

If p ≥ 1, then also Lp ∩ Lr ⊆ Lq.

Proof. Exercise.

Proposition 4.20. Let X be a measure space with �nite measure µ. Let

0 < p ≤ q ≤ ∞. Then, Lq(X,µ) ⊆ Lp(X,µ). Moreover,

‖f‖p ≤ ‖f‖q (µ(X))1/p−1/q ∀f ∈ Lq(X,µ).

If p ≥ 1, then also Lq(X,µ) ⊆ Lp(X,µ).

Proof. Exercise.

Lemma 4.21. Let X be a measure space with σ-�nite measure µ and let

p ∈ (0,∞). Then, there exists a function w ∈ Lp(X,µ) such that 0 < w < 1.

Proof. Let {Xn}n∈N be a sequence of disjoint sets of �nite measure such that
X =

⋃
n∈NXn. De�ne

w(x) :=

(
2−n

1 + µ(Xn)

)1/p

ifx ∈ Xn.

This has the desired properties. Exercise.Show this.

Exercise 30 (adapted from Lang). Let X be a measure space with σ-�nite
measure µ and let p ∈ [1,∞). Let T : Lp → Lp be a bounded linear
map. For each g ∈ L∞ consider the bounded linear map Mg : Lp → Lp

given by f 7→ gf . Assume that T and Mg commute for all g ∈ L∞, i.e.,
T ◦ Mg = Mg ◦ T . Show that T = Mh for some h ∈ L∞. [Hint: Use
Lemma 4.21 to obtain a function w ∈ Lp ∩ L∞ with 0 < w. Then, for
f ∈ Lp ∩ L∞ we have

T (wf) = wT (f) = fT (w).

If we de�ne h := T (w)/w we thus have T (f) = hf . Prove that h is es-
sentially bounded by contradiction: Assume it is not and consider sets of
positive measure where |h| > c for some constant c and evaluate T on the
characteristic function of such sets. Finally, prove that T (f) = hf for all
f ∈ Lp.]
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4.3 Hilbert spaces and L2

De�nition 4.22. Let V be a complex vector space and 〈·, ·〉 : V ×V → C a
map. 〈·, ·〉 is called a sesquilinear form i� it satis�es the following properties:

• 〈u+ v, w〉 = 〈u,w〉+ 〈v, w〉 and
〈u, v + w〉 = 〈u, v〉+ 〈u,w〉 for all u, v, w ∈ V .

• 〈λu, v〉 = λ〈u, v〉 and 〈u, λv〉 = λ〈u, v〉 for all λ ∈ C and v ∈ V .

〈·, ·〉 is called hermitian i� it satis�es in addition the following property:

• 〈u, v〉 = 〈v, u〉 for all u, v ∈ V .

〈·, ·〉 is called positive i� it satis�es in addition the following property:

• 〈v, v〉 ≥ 0 for all v ∈ V .

〈·, ·〉 is called de�nite i� it satis�es in addition the following property:

• If 〈v, v〉 = 0 then v = 0 for all v ∈ V .

Proposition 4.23 (from Lang). Let V be a complex vector space with a

positive hermitian sesquilinear form 〈·, ·〉 : V ×V → C. If v ∈ V is such that

〈v, v〉 = 0, then 〈v, w〉 = 〈w, v〉 = 0 for all w ∈ V .

Proof. Suppose 〈v, v〉 = 0 for a �xed v ∈ V . Fix some w ∈ V . For any t ∈ R
we have,

0 ≤ 〈tv + w, tv + w〉 = 2t<(〈v, w〉) + 〈w,w〉.
If <(〈v, w〉) 6= 0 we could �nd t ∈ R such that the right hand side would
be negative, a contradiction. Hence, we can conclude <(〈v, w〉) = 0, for all
w ∈ V . Thus, also 0 = <(〈v, iw〉) = <(−i〈v, w〉) = =(〈v, w〉) for all w ∈ V .
Hence, 〈v, w〉 = 0 and 〈w, v〉 = 〈v, w〉 = 0 for all w ∈ V .

Theorem 4.24 (Schwarz Inequality). Let V be a complex vector space with

a positive hermitian sesquilinear form 〈·, ·〉 : V ×V → C. Then, the following
inequality is satis�ed:

|〈v, w〉|2 ≤ 〈v, v〉〈w,w〉 ∀v, w ∈ V.

Proof. If 〈v, v〉 = 0 then also 〈v, w〉 = 0 by Proposition 4.23 and the inequal-
ity holds. Thus, we may assume α := 〈v, v〉 6= 0 and we set β := −〈w, v〉.
By positivity we have,

0 ≤ 〈βv + αw, βv + αw〉.

Using sesquilinearity and hermiticity on the right hand side this yields,

0 ≤ |〈v, v〉|2〈w,w〉 − 〈v, v〉|〈v, w〉|2.

(Exercise.Show this.) Since 〈v, v〉 6= 0 we can divide by it and arrive at the
required inequality.
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Proposition 4.25. Let V be a complex vector space with a positive hermitian

sesquilinear form 〈·, ·〉 : V × V → C. Then, V carries a seminorm given by

‖v‖ :=
√

〈v, v〉. If 〈·, ·〉 is also de�nite then ‖ · ‖ is a norm.

Proof. Exercise.Hint: To prove the triangle inequality, show that ‖v+w‖2 ≤
(‖v‖+‖w‖)2 can be derived from the Schwarz inequality (Theorem 4.24).

De�nition 4.26. A positive de�nite hermitian sesquilinear form is also
called an inner product or a scalar product. A complex vector space equipped
with such a form is called an inner product space or a pre-Hilbert space. It
is called a Hilbert space i� it is complete with respect to the induced norm.

Proposition 4.27. Consider the map 〈·, ·〉 : L2 × L2 → C given by

〈f, g〉 :=
∫

fg.

Then, 〈·, ·〉 is a positive hermitian sesquilinear form on L2. Moreover, the

seminorm induced by it according to Proposition 4.25 is the ‖ · ‖2-seminorm.

Also, the map 〈·, ·〉 : L2×L2 → C given by 〈[f ], [g]〉 := 〈f, g〉 de�nes a positive

de�nite hermitian sesquilinear form on L2. The norm induced by it is the

‖ · ‖2-norm. This makes L2 into a Hilbert space.

Proof. Exercise.

The following Theorem about Hilbert spaces is fundamental, but we do
not include the proof here, as we will only use it one single time.

Theorem 4.28. Let H be a complex Hilbert space and α : H → C a bounded

linear map. Then, there exists a unique element w ∈ H such that

α(v) = 〈v, w〉 ∀v ∈ H.


